The impact of differential socialization on the intergenerational transmission of age at marriage

Rural Holland 1850-1940

Jan Van Bavel – Jan Kok

Working paper of the
Scientific Research Community Historical Demography

WOG/HD/2009-10
THE IMPACT OF DIFFERENTIAL SOCIALIZATION ON THE INTERGENERATIONAL TRANSMISSION OF AGE AT MARRIAGE

RURAL HOLLAND 1850-1940

Jan Van Bavel & Jan Kok

Jan Van Bavel
Interface Demography
Vrije Universiteit Brussel
Pleinlaan 2 – 1050 Elsene – Belgium
Tel.: 32-2-6292037
Fax : 32-2-6292420
Jan.VanBavel@vub.ac.be

The Virtual Knowledge Studio for the Humanities and Social Sciences – VKS
Royal Netherlands Academy of Arts and Sciences
Cruquiusweg 31 – 1019 AT Amsterdam – The Netherlands
Tel.: 31 20 8500 483
Fax: +31 20 8500 271
jan.kok@vks.knaw.nl
Abstract

The evolution of age at marriage is important for the fertility transition. As yet, not many studies have addressed the issue of the inheritance of age at first marriage. This paper focuses on the intergenerational transmission of age at first marriage from mothers to daughters in rural Holland before and during the early stages of the fertility transition. To this end, we use a detailed dataset with two generations of marriages stemming from the province of North-Holland in the Netherlands. Multilevel models are used to analyse the effect of first generation family characteristics on second generation daughters’ ages at first marriage. A crucial advantage compared to conventional family reconstitution studies is that we traced daughters wherever they migrated in the Netherlands. The results clearly indicate that age at first marriage was to some extent inherited from mothers to daughters. Yet, the inheritance effect is not common to all social classes and religious denominations. It is present among the working and middle classes but virtually absent among farmers. It is strong among Protestants but weak among Catholics. These findings support suggestions in the recent literature that family inheritance of reproductive behaviour is stronger in societal circumstances that leave more room for individual decision-making.
Woman's age at marriage has played a key role in the restrictive reproductive regime of Western Europe since early modern times (Hajnal, 1965; Seccombe, 1992). Jointly with the ups and downs in the proportion marrying, age at marriage represented a "nuptiality valve" that strongly influenced the birth rate. Entry into marriage was strongly related to the age at entry into parenthood. In most cases, an advanced age at marriage for a woman meant an advanced age at first birth, which would also imply a lower final family size, on average. This classic, Malthusian role of a high age at marriage became less salient when men and women in Western Europe started to marry earlier and married couples highly restricted the fertility within marriage. This is what occurred in most nations and provinces of Western Europe from the late nineteenth century onwards, with France as a well-known pioneer preceding the rest of the continent (Chesnais, 1986).

Hence, the history of the evolution of age at marriage is highly significant for the evolution of fertility. To date, not many studies have addressed the issue of the intergenerational inheritance of age at first marriage. This paper focuses on the intergenerational transmission of age at marriage from mothers to daughters in rural Holland before and during the early stages of the fertility transition. To what extent was age at marriage inherited from mother to daughter? Did daughters whose mother married at a relatively advanced age tend to marry relatively late themselves as well? And did daughters of relatively early-marrying mothers marry relatively early themselves? "Relatively" here means to indicate here that "late" or "early" marriage is always to be judged within the same generation, i.e. the parental generation for the mothers and the child generation for the daughters. To what extent do daughters from the same mother share a similar age at marriage? Can this be explained for some part by family characteristics like the occupational status of the family's father and the religion of both parents? And, finally, are there any differences between social groups with respect to the extent of intergenerational transmission of age at marriage?

1. Pathways of intergenerational transmission

At least four pathways may be discerned that may explain the intergenerational inheritance, if any, of demographic behaviour. It may result from primary socialization, from direct social control exerted by parents, from the inheritance of social status characteristics, or from the inheritance of innate, genetically based traits (Barber, 2000; Steenhof & Liefbroer, 2008; van Poppel, Monden & Mandemakers, 2008).

Socialization theory assumes that the conformity of children's behaviour with that of their parents is at least partly the result of the process of learning from the primary network consisting mainly of parents, usually the mother in particular, during the early formative years of life. This process of learning is called primary socialization and may sometimes involve a conscious activity but typically occurs without any conscious
Primary socialization is especially effective in bringing about conformity between parents and children if it results in the internalization of beliefs, attitudes, and values. Internalization is said to occur when learned ideas become to be perceived as personal, freely chosen points of view (Rocher, 1970; Barber, 2000). Behavioural conformity between parents and children may also be the result of explicit social control or supervision exerted by parents. For example, some parents may be keen at watching over the virginity of their unmarried daughters. A father with a university degree may forbid any move towards marriage for his son before he, in turn, has graduated from university. This kind of supervision may or may not be effective without the internalization of the norms that are being guarded (Barber, 2000).

Thirdly, the resemblance in demographic behaviour between parents and children may be an indirect consequence of the fact that both generations share social status characteristics that independently influence the behaviour in both generations. For example, highly educated parents tend to also want and have highly educated children. Because age at marriage is positively correlated in any generation with the level of education and the number of years enrolled in school, college or university, ages at marriage tend to correlate between generations. This may occur even if there is no direct transmission of the demographic behaviour (Steenhof & Liefbroer, 2008).

Finally, the inheritance of genes may also contribute to similarities in the demographic behaviour of parents and children. This should not chiefly be seen as a mechanistic "genetic determination" of specific behaviours. Rather, it has been shown that personality characteristics (the inclination for risk taking behaviour, for example) often have a genetic basis. These personality characteristics may influence the propensity to exhibit specific demographic behaviour (Hobcraft, 2006), for example the propensity to form a family early in life (Woodward & Fergusson, 1999; Woodward, Fergusson & Horwood, 2001; Kirk et al., 2001; Waldron et al., 2007).

2. Earlier research and new hypotheses

Recent studies have reported for several demographic behaviours that the extent of intergenerational inheritance seems to have strengthened over time since the nineteenth century (Murphy & Wang, 2001; Kohler & Rodgers, 2003; Steenhof & Liefbroer, 2008). Van Poppel, Monden, and Mandemakers (2008) found that the intergenerational transmission of age at marriage became stronger in the Netherlands towards the end of the nineteenth and early twentieth century.

Findings like these have been interpreted in a way that may feel somewhat paradoxical at first sight. Indeed, it has been suggested that intergenerational transmission tends to become stronger in societal conditions that leave more room, relatively speaking, for "free" individual decision-making. The argument is that in societies and social circles
that are strongly regulated by social norms and prescriptions, people tend to behave as required by their social position. Under these circumstances, intergenerational similarities are largely limited to the intergenerational transmission of social status. Yet, when social rules and regulations relax and more room is left for personal decision making, intergenerational transmission may also work through primary socialization and, hence, the internalization of ideas about what is wrong and right. Therefore, so-called personal opinions may actually be borrowed from parents. Also genetically inherited propensities, inclinations and personality characteristics may have more room to play a role when societal rules and regulations become less strict (Murphy & Wang, 2001; Kohler & Rodgers, 2003; Steenhof & Liefbroer, 2008).

In sum: less may mean more. Societal regulations that are less strict may imply that behavioural patterns of parents and children may become more instead of less similar. This may run against the intuition of standard individualisation theory and ideas about the individualisation of life course trajectories. Indeed, from the perspective of common individualisation theory in sociology, one could argue that parents in more open societies would be less inclined to influence their children, or that they would be less successful in doing so. In individualized societies, parents are expected to encourage their children to go their own way instead of forcing them to follow their parents’ lead (Beck & Beck-Gernsheim, 1996; Shanahan, 2000). From this perspective, one would expect intergenerational similarities in demographic behaviour to become weaker in conditions with more open societal conditions. This was indeed the hypothesis formulated in a recent article in Human Nature by van Poppel, Monden, and Mandemakers (2008) but, as said, the time trend ran in the opposite direction: intergenerational inheritance effects of age at marriage were becoming stronger over time in nineteenth century Netherlands, not weaker. The authors surmise that, apparently, socialization and not social control was the main factor in intergenerational transmission of demographic traits, and that over time its role became even stronger. They conclude their article by calling for research looking more closely at the socialization process. A more detailed study of intergenerational transmission within specific groups will identify the socio-economic and cultural conditions under which social control mechanisms recede and primary socialization becomes predominant. This is precisely the aim of our analysis.

In this paper, we will look at the role of two family background characteristics: the religious denomination of the parents and social class, as indicated by the occupational group of the father. Earlier research about the Netherlands has indicated that there are more degrees of freedom for individual decision making with respect to birth control among liberal Protestants than among orthodox Protestants or Roman Catholics (Van Bavel & Kok, 2005; Kok & Van Bavel, 2006). If the suggestion in the recent literature that more freedom translates into stronger intergenerational inheritance is correct, we would therefore expect more indications of it in the first group. For the same reason, we would expect stronger intergenerational transmission in the working classes than in
the middle classes or among farmers, because we suspect that social norms are tighter among the latter socio-economic groups (Damsma & Kok, 2005).

3. Data

The empirical analysis is based on a detailed dataset with two generations of people living in the central area of the province of North-Holland, which is situated in the north-western part of The Netherlands. The first generation was selected from the marriage certificates of the municipality of Akersloot. Socio-economically and culturally, this municipality is quite typical of the surrounding area. The economy of Akersloot was purely agrarian. In the nineteenth century, cattle-breeding and dairy farming were quite lucrative and the area profited from its favourable geographic position close to expanding cities as well as to the harbours where dairy products could be exported. In addition, from the 1880s onward many residents found employment in bulb-farming that was by that time introduced in the region. Even a small acreage of bulbs could support a family (Damsma and Kok, 2005). The fact that the North-Holland countryside fared economically relatively well, does not imply that people were immobile. On the contrary, people would move often for land or labour across the province. We have followed the families, who were founded in Akersloot, wherever they went in the Netherlands. This is a crucial advantage in comparison with conventional family reconstitution studies, that are typically limited to families staying in the same municipality (Henry, 1967; King, 1996; Wrigley, Davies, Oeppen, and Schofield, 1997).

Akersloot was exceptional in that it has kept a dynamic administration of the population already from 1830 onwards. The Akersloot population registers recorded marriages, births, migrations and death of individuals, as well as their occupation and religion. From the period 1830-1879, all 298 first marriages in which the husbands actually lived in Akersloot were included if it was the first marriage both for him and for her. Seventeen couples left the parish soon after the marriage and could not be traced in nearby villages. The remaining 281 couples were followed until the death of the last remaining partner, regardless of where they happened to live. Thus, we were able to include 180 completed marriages (lasting at least until the 45th birthday of the wife). In all, 256 marriages proved to be fertile, resulting in 1480 births.

The second generation, made up of the children produced by the first generation just described, was born between 1830 and 1902. This paper focuses at the 337 first marriages of daughters from the second generation, stemming from 164 different families of the first generation. Spinsters are not included; we only look at the timing of marriage among those eventually marrying. So clearly, we cannot make any judgements about diverging marriage propensities. In order to account for the nested
data structure, we will employ random effects multilevel modelling (Courgeau & Baccaini, 1998; Snijders & Bosker, 1999).

4. Results

The upper panel of figure 1 plots the frequency distribution of ages at first marriage in the second generation. Its average age at marriage was 24.70 (standard deviation 3.90; N=337), which reflects the typically low age at marriage in North Holland. In the Netherlands as a whole, the average age at marriage was considerably higher during this period, i.e. between 1850 and the First World War, namely about 26 to 27 years (van Poppel, 1992; NIDI, 2003).

Figure 1. Histogram of age at first marriage of daughters (upper) and their mothers (lower)

Age at first marriage of daughters

Age at first marriage of mothers
As can be seen in figure 2, this second generation did not yet exhibit any major downward trend in the age at marriage. There was some downward trend among women born between 1830 and 1860, but this trend halted after that year and, if anything, tended to even reverse somewhat (as indicated by the LOESS-line in figure 2; see Cleveland & Devlin, 1988). This closely matches the fact that, in the Netherlands as a whole, the downward trend in women's ages at marriage halted around 1885 and even increased somewhat towards the First World War (van Poppel, 1992).

Figure 2. Scatter plot and locally weighted regression line (LOESS) of age at first marriage of daughters (= the second generation) by year of birth

Because of the lack of any substantively important time trend, we may disregard the year of birth in the following analyses to simplify model fitting. All results to be presented are robust with respect to including or not including brides' ages at birth.

A first question to be answered is to what extent the variation in ages at marriage in the second generation can be explained by the fact that brides are daughters from different mothers or families. This is called the between-families variation in ages at marriage. Alternatively, to what extent is the variance of the age at first marriage to be explained by individual-level sources of variation? This question addresses the within-families variation. In order to try to decompose the two sources of variation, we fitted a multilevel null model of age at marriage with two random components, called α_j and ϵ_j:
\[Y_{ij} = \gamma_{00} + \alpha_j + \varepsilon_{ij} \]

where \(Y_{ij} \) is the age at first marriage of woman \(i \), daughter of mother or family \(j \); \(\gamma_{00} \) is the overall average age at first marriage across all families and daughters; \(\alpha_j \) is the difference between the overall average and the average for all daughters belonging to family \(j \); and \(\varepsilon_{ij} \) is the difference between the family average and individual daughter \(i \). Maximum likelihood estimation was used to estimate the variances of \(\alpha_j \) and \(\varepsilon_{ij} \) from the data, assuming that both variables are normally distributed. The variance of \(\alpha_j \) is estimated at 4.51, the variance of \(\varepsilon_{ij} \) at 10.87, which amounts to an intraclass correlation coefficient (ICC) of \(4.51 / (4.51 + 10.87) = 0.29 \) (see Snijders & Bosker, 1999). This suggests that about 29% of the variability in ages at first marriage is due to family-specific sources of variation. This is the same order of magnitude as the ICC for the null-model reported in the study by van Poppel, Monden, and Mandemakers (2008), namely 32% (see table 2).

One possible reason for the intra-familial correlation of ages at marriage is that daughters to some extent inherit early or late marriage from their mothers. The bottom panel of figure 1 displays the frequency distribution of mothers' ages at first marriage. Evidently, frequencies are lower than for daughters' ages due to the multilevel structure of the data, i.e. several daughters may share the same mother. Mean age at first marriage for mothers (marrying between 1830 and 1879) was 24.32 (s.d. 3.34, N=164), which is just slightly lower than the average age at marriage for daughters. Recall that only fertile mothers are included in our first generation sample because we are looking at the ages at marriage of their daughters, so the average age at marriage in this sample is not representative of all brides of their generation.

Are the ages at marriage of daughters in the second generation indeed affected by their mother's age at marriage? In order to find out, model 1 adds the mother's age at marriage (\(M_j \)) as a family-level covariate:

\[Y_{ij} = \gamma_{00} + \alpha_j + \varepsilon_{ij} \]

\[\alpha_j = \gamma_{01} M_j + \nu_j \]

\[\Rightarrow Y_{ij} = \gamma_{00} + \gamma_{01} M_j + \nu_j + \varepsilon_{ij} \]

Mothers' ages at marriage have been mean-centred in order to facilitate the inclusion of interaction effects later on and also to facilitate the interpretation of the intercepts.

The fitted coefficients of model 1 indicate that daughters' ages at marriage are significantly affected by their mother's age at marriage. A one year increase in the mother's age at first marriage was associated with an increase of the daughter's age at marriage of about two-and-a-half months (0.21 x 12 months = 2.5 months). After including this family-level covariate, the residual intrafamily correlation coefficient is estimated at 0.26, being a decline of 3 percentage points (coming from 0.29). Hence, 26% of the total unexplained variance in age at marriage remains unexplained at the family level.
Model 2 adds the father’s occupational group and the parents’ religious denomination as family-level covariates. Due to limitations of sample size and to the relative homogeneity of the occupational structure in the Akersloot area, we are only able to make robust distinctions between three social classes: the working classes, the middle classes, and farmers. The former group consists of the families of both skilled and unskilled labourers. The middle classes include both white collar occupations, merchants and artisans, and also one single family (represented with two brides) from the elite. Farmers are the biggest group: they comprise 46.3% of the families in the sample and about the same percentage of the brides (see table 1).

Table 1. Frequency distributions of social class and religious denominations of the families of origin

<table>
<thead>
<tr>
<th></th>
<th>Families</th>
<th></th>
<th></th>
<th>Brides</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Social class:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Working class</td>
<td>67</td>
<td>40.9</td>
<td>130</td>
<td>38.6</td>
<td></td>
</tr>
<tr>
<td>- Middle class</td>
<td>21</td>
<td>12.8</td>
<td>48</td>
<td>14.2</td>
<td></td>
</tr>
<tr>
<td>- Farmers</td>
<td>76</td>
<td>46.3</td>
<td>159</td>
<td>47.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>164</td>
<td>100.0</td>
<td>337</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Religious denomination:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Liberal protestant</td>
<td>90</td>
<td>54.9</td>
<td>202</td>
<td>60.0</td>
<td></td>
</tr>
<tr>
<td>- Orthodox protestant</td>
<td>10</td>
<td>6.1</td>
<td>13</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>- Roman Catholic</td>
<td>64</td>
<td>39.0</td>
<td>122</td>
<td>36.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>164</td>
<td>100.0</td>
<td>337</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Firstborn</td>
<td></td>
<td></td>
<td>63</td>
<td>21.1</td>
<td></td>
</tr>
<tr>
<td>Lastborn</td>
<td></td>
<td></td>
<td>71</td>
<td>18.7</td>
<td></td>
</tr>
<tr>
<td>Single children</td>
<td></td>
<td></td>
<td>4</td>
<td>1.1</td>
<td></td>
</tr>
</tbody>
</table>

As to religious denomination, the Dutch Reformed make up the big majority of the liberal Protestant group. The Mennonite group should be considered liberal Protestant as well. Together, these liberal families make up almost 55% of the sample. There were just 10 orthodox Protestant families in the Akersloot sample, which amounts to about 6%, while there were 39% Catholic families (table 1).

As expected based on previous research (van Poppel, 1992; Van Bavel & Kok, 2005), the average age at marriage is higher for brides with a Catholic or orthodox Protestant family background than for the reference group of liberal Protestants. (The standard error for the difference between orthodox and liberal Protestants is too high to yield statistically significant results, probably due to the fact that there are only 13 brides
from 10 different orthodox families in this sample). As to the occupational group of the father, middle class brides tended to be more than a year-and-a-half younger than working class brides in rural North Holland. The difference between working class and farmer brides was smaller and statistically not significant. The residual intrafamily correlation coefficient is 0.23 (= 3.23/3.23+10.82), being 3 percentage points lower than in the previous model. So 23% of the unexplained variance in age at first marriage remains on the family level.

Model 3 adds individual-level indicators of birth order within the family. More specifically, we add two dummy variables: one dummy indicates whether the daughter was the firstborn of all children, a second whether the daughter was the lastborn of all children (including sons as well as daughters) (see table 1). Daughters who score zero on both dummies were born in between at least two of their siblings. Logically, daughters who were the only child score one on both dummy variables. (We tried to include a separate dummy variable for single children but there are too few of them to allow estimation of such a model; fitting the following model without the daughters who were a single child yields basically the same results). It appears that first- as well as lastborn daughters tend to marry at a significantly lower age than other daughters, if they ever marry at all, i.e. about a year and two or three months earlier than daughters who had younger and older siblings.

The extent of intergenerational inheritance in different social groups

In the previous models, the effect of mother’s on daughter’s age at marriage represents the direct intergenerational inheritance effect. In all models fitted thus far, we implicitly assume that this effect has, on average, the same magnitude. Yet, as suggested in the theoretical discussion, the similarity between mothers and daughters may not be the same for all daughters and in all social groups. Therefore, model 4 specifies that the intergenerational inheritance effect may differ according to the characteristics of the family and daughter involved, i.e. the religious denomination of the parents, the father’s occupational group, and the daughter’s birth order.
Table 2. MLE-parameters of four fitted multilevel regression models of daughter’s age at first marriage (for all model fits, N = 337 daughters from 164 families)

<table>
<thead>
<tr>
<th>Model 0</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>b</td>
<td>s.e.</td>
<td>p</td>
<td>b</td>
</tr>
<tr>
<td>24.76</td>
<td>0.25</td>
<td>0.0000</td>
<td>24.73</td>
<td>0.25</td>
</tr>
</tbody>
</table>

FAMILY CHARACTERISTICS

Mother’s age at marriage (centered) | 0.21 | 0.08 | 0.0055 | 0.16 | 0.08 | 0.0386 | 0.20 | 0.08 | 0.0131 | 0.56 | 0.16 | 0.0005 |
Denomination (liberal protestant=ref.) | 0.00 | / | / | 0.00 | / | / | 0.00 | / | / |
- Roman Catholic | 1.72 | 0.51 | 0.0009 | 1.71 | 0.51 | 0.0010 | 1.67 | 0.50 | 0.0009 |
- Orthodox Protestant | 1.31 | 1.15 | 0.2558 | 1.28 | 1.15 | 0.2650 | 1.63 | 1.13 | 0.1499 |
Social Class (working class=ref.) | 0.00 | / | / | 0.00 | / | / | 0.00 | 0.00 | 0.0000 |
- Farmer | -0.66 | 0.55 | 0.2301 | -0.69 | 0.55 | 0.2128 | -0.78 | 0.54 | 0.1488 |
- Middle and Upper Classes | -1.70 | 0.76 | 0.0267 | -1.58 | 0.77 | 0.0403 | -1.42 | 0.75 | 0.0607 |

DAUGHTER’S OWN CHARACTERISTICS

Birth order (middle=ref.) | 0.00 | / | / | 0.00 | / | / |
- Youngest child | -1.30 | 0.51 | 0.0111 | -1.36 | 0.52 | 0.0094 |
- Oldest child | -1.20 | 0.49 | 0.0148 | -1.19 | 0.50 | 0.0180 |

INTERACTION TERMS

Mother’s age at marriage (centered) ...
- X Roman Catholic | -0.36 | 0.16 | 0.0232 |
- X Orthodox Protestant | -0.05 | 0.28 | 0.8603 |
- X Farmer | -0.56 | 0.17 | 0.0011 |
- X Middle and Upper Classes | -0.01 | 0.27 | 0.9818 |
- X Youngest child | -0.01 | 0.16 | 0.9297 |
- X Oldest child | 0.08 | 0.14 | 0.5962 |

Unexplained variance
- individual level | 10.87 | 10.93 | 10.82 | 10.21 | 10.27 |
- family level | 4.51 | 3.94 | 3.23 | 3.54 | 2.62 |
- ICC | 0.29 | 0.26 | 0.23 | 0.26 | 0.20 |
Log-likelihood | -928.3 | -924.4 | -917.0 | -911.8 | -903.8 |
Firstly, the effect of mother’s age at marriage seems to have been considerably stronger among Protestants than among Catholics (see figure 3). Among liberal protestants (who are the reference group), a one year increase in mother's age at marriage is associated with more than half a year's increase in her daughter's age at marriage. The intergenerational effect is estimated to be about the same among orthodox protestants (although there are, as said, too few orthodox in this sample to make any reliable judgements about them). Among Catholics, however, the intergenerational effect is much weaker: if mother's age at marriage is one year higher, her daughter's age at marriage is expected to be less than two-and-a-half months higher. The difference with the liberal Protestants is statistically significant.

Figure 3. The effect of mother's age at first marriage on her daughter's age at marriage, by religious denomination (model 4)*

* The plotted regression lines are for brides with a working class family background who were nor the oldest nor the youngest child in their family of orientation

Did the strength of intergenerational transmission also differ by social class, as indicated by the occupational group of the brides' fathers? The estimated interaction effects of model 4 are displayed in figure 4. It appears that there was no inheritance of age at first marriage from mothers to daughters in farming families. However, in working and middle class families, the inheritance effect was considerable, with no significant difference between the slopes for these two social classes.
Finally, there was no difference between first-, middle, or lastborn daughters with respect to the inheritance effect.

Figure 4. The effect of mother’s age at first marriage on her daughter’s age at marriage, by father’s occupational status (model 4)*

![Graph showing the effect of mother's age at first marriage on her daughter's age at marriage, by father's occupational status.](image)

* The plotted regression lines are for brides with a liberal protestant family background (i.e. the majority) who were nor the oldest nor the youngest child in their family of orientation.

5. Conclusion

There is clear evidence in this sample of families, stemming from the North-Holland village of Akersloot, that age at first marriage was to some extent inherited from mothers to daughters. As far as we can tell, this inheritance is not just a matter of inheriting a social status or religious denomination that is associated with the age at marriage. Indeed the net effect of the mother’s on her daughter’s age at first marriage declined only marginally after controlling for social class and religious denomination.

The inheritance effect is not common to all social classes and religious denominations, however. It is present among the working and middle classes but virtually absent among farmers. It is strong among Protestants but weak among Catholics. Overall, these findings seem to be in line with suggestions in the recent literature that family inheritance of behaviour associated with reproduction is stronger in societal circumstances that leave more room for individual decision-making. In those
circumstances, primary socialization – and therefore intergenerational transmission through internalization of behavioural traits – is much more important than group norms and enforced compliance to those norms.

The portion of the variation in ages at first marriage that is due to the family level may represent inheritance from the parental to the child generation, for genetic or social-environmental reasons. Yet, it may also represent another kind of family effect. Ages at marriage for sisters from the same family may correlate due to some inheritance effect from first to second generation, but also because sisters would be imitating, or at least influencing, each other without their parents playing a role in that process. It will be a challenge for future research to decompose the two different sources of variance at the family level.

References

