The evolution of knowledge landscapes – measurement, visualization, models and simulations

Andrea Scharnhorst
Analogous spaces, Ghent, May 14-17, 2008

Courtesy of Charles van den Heuvel
Modelling and simulating learning agents

Annimation by Thomas Huesing, Berlin
Outline

• Present the concept – general level

• Present of different re-specifications
 – Competences
 – Technologies
 – Research practices
Evolution in a landscape

Wright 1932: Species in an adaptive landscape (fitness landscape)

Complexity theory: stable states of a system are specific points in an “energy or entropy landscape” - Prigogine

\[\frac{dx}{dt} = -x^2 + \lambda x + \mu = -\frac{dU}{dx} \]

Landschaften in der Analyse komplexer dynamischer Systeme

Potentialfunktion

Strukturbildung als Suche nach stabilen Zuständen

Evolution als Folge von Selbstorganisationsschritten

Innovation als Folge einer Instabilisierung eines bestehenden Zustandes

Evolutionslandschaft, lokal definierte Fitness
Self-organized learning in a problem space

- People use different “competences” differently in different situations when they need to solve a problem – can be measured

- Project together with Anne Beaulieu, John Erpenbeck, Werner Ebeling, Thomas Hüsing

- EVOLINO
Agents which use fact knowledge (selection – comparing solutions), creativity (mutation – creating/testing solutions), imitation (social selection – talking, communicating)
EVOLINO – a web based simulation

Go to Andrea Scharnhorst -> Current activities -> Evolino
Function of the model

- Re-specification: related to concepts in management theory, organization theory and psychology
- Used as tool to link up different concepts as learning and use and change of competences
- Used as training tool introducing into complexity theory (self-organized learning)
Technological evolution as search in an Innovation landscape

• Project together with Lutz Marz, Thomas Aigle, Ante Krstacic-Galic

• Wissenschaftszentrum für Sozialforschung Berlin, working paper
Measuring the occupation of a technological space – the air plane case – Saviotti, Bowman 1984

Innovation matrix

<table>
<thead>
<tr>
<th>Kraftstoff (k)</th>
<th>CO₂-emittierende Kraftstoffe</th>
<th>CO₂-neutrale Kraftstoffe</th>
<th>C-freie Kraftstoffe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Konventionell</td>
<td>NICHT-KONVENTIONELL</td>
<td>Semi-alternativ</td>
</tr>
<tr>
<td></td>
<td>Kohlenwasserstoffe</td>
<td>SynFuels</td>
<td>Ole</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alkohole</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gase</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Strom</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wassersstoff</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Konventionell</td>
<td></td>
</tr>
<tr>
<td>Wankelmotor</td>
<td></td>
</tr>
<tr>
<td>Konventionell</td>
<td></td>
</tr>
<tr>
<td>Misch-Antrieb</td>
<td></td>
</tr>
<tr>
<td>Milde Hybride mit Batterie</td>
<td></td>
</tr>
<tr>
<td>Elektrofensternen-Antreiben</td>
<td></td>
</tr>
<tr>
<td>Akkubetrieb</td>
<td></td>
</tr>
</tbody>
</table>

Stagnative Innovationen
Inkrementale Innovationen
Inkrementale Innovationen 1. Grades
Radikale Innovationen 2. Grades

X Technologisch ausgeschlossen
/ Inventionsräume

Abbildung 5, Quelle: Aigle/März 2007, S2
Innovation landscape

Possible trajectories?

Critical mass/population?
Function of the model

- Related to concepts innovation theory
- Used as tool to order and interpret qualitative data
- Used as tool to develop quantitative indicators (critical market size, early markets)
Simulation landscape

• Project together with Anne Beaulieu, and Matt Ratto
Competence project: In search for the best interface

Racing for solutions in the problem space
The simulation landscape

CONCEPT

- **Rule based**
 - Archeology, architecture, Computational humanities

- **Visual simulation**
 - Virtual reality

- **Metaphoric simulation**
 - Interactive visualization of concepts by means of game rules

- **Symbolic simulation**
 - Visualization of concepts by means of equations

- **Systems dynamics**
 - Interactive learning of complex dynamics

- **Computational sociology**

- **Behavioral simulation**
 - Rule-based description of complex dynamics

PHENOMENON

- **Scenarios simulation**
 - Interactive learning of complex dynamics

- **Numeric simulation**
 - Equation based description of complex dynamics

- **Physical of complex systems**

- **Philosophical system theory**

Purpose

- ‘Closed’ description

- ‘Open’ description
Function of the model

• Related to concepts in science and technology studies about the role of models and simulations in different disciplines and different epistemic values

• Understand better the potential of innovation and barriers to use them (for instance virtual reality in archeology)
Models as heuristic devices

• Ocupation space: taxonomy, measurement – model used as a mirror against which we order observations

• Changing occupation: time, dynamic processes – model a producer of explanations

• Simulation – model as experiment
Analogous space

G-Model

(Re-)Generalisation

“Trading zone” – Trading epistemic values

S-Model

(Re-)Specification
Simulation collaboratory at the VKS

Simulation of innovation in knowledge processes

• What add models and simulations to the understanding of innovation?
• How models and simulations are used as research instruments to structure research agendas, research processes in interdisciplinary teams, negotiations?
Current and future activities around the simulation collaboratory

- CREEN (Critical events in evolving networks) www.creen.org
- The Heraeus workshop “Physics and Evolution”, January 2008, with a stream on modelling social, economic and information processes
- Book “Innovation networks” (with Andreas Pyka, Springer)
- Special issue Journal of Informetrics “Science of science” (Concepts and models of science development) (with Katy Börner)
THANKS!